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2-D Analysis of Leakage in Printed-Circuit Lines
Using Discrete Complex-Images Technique
Joaquín Bernal, Francisco Mesa, Member, IEEE, and Francisco Medina, Senior Member, IEEE

Abstract—The mixed-potential integral equation is combined
with the discrete complex-images technique to analyze the com-
plete spectrum of multilayered printed transmission lines. A
relevant contribution of the present two-dimensional approach
is its ability to study both the bound and leaky regimes in a very
simple, systematic, and efficient way. Since the analysis is carried
out in the spatial domain, this method makes it possible to analyze
the leakage phenomenon for structures with nonzero-thickness
conductors. Efficient quasi-analytical techniques are employed to
solve the integral equation.

Index Terms—Complex images, leaky modes, mixed-potential
integral equation, printed-circuit lines.

I. INTRODUCTION

I NTEGRAL-EQUATION methods are widely recognized as
very efficient tools for studying the propagation character-

istics of printed-circuit lines. Often, these integral equations
are posed in the spectral domain since the Green’s functions
of the layered medium are only known in closed-form in this
domain [1]. Thus, many works have shown the efficiency
of the spectral-domain approach (SDA) to compute the
propagation parameters of both bound and/or leaky modes
[2]–[5]. Nevertheless, a well-known limitation of the SDA is
its inadequacy to deal properly with general nonzero thickness
conductors. A possible alternative to the SDA, able to treat
with nonzero-thickness conductors, is found when the cor-
responding integral equation is directly solved in the spatial
domain [6]. This technique requires to compute the spa-
tial-domain Green’s functions from their spectral counterparts
through Fourier-transform inversion. Numerically efficient
integration schemes have been used in the past to perform
that task [7]. However, a powerful technique proposed at the
end of the 1980s, i.e., the discrete complex-images technique
(DCIT) [8], has become, in a variety of versions [9]–[11], the
standard technique to obtain spatial-domain Green’s functions
for layered structures. That technique, originally intended for
the analysis of three-dimensional (3-D) planar circuits and an-
tennas, has been recently adapted to deal with two-dimensional
(2-D) guiding structures, including strip-like [12], coplanar
waveguide [13], and arbitrary cross-sectional conductors [14].
The relevance of a fast generation of the Green’s function in
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2-D problems is relatively higher than in 3-D cases because the
CPU time devoted to solve the final system of linear equations
is usually negligible in the 2-D situation and the Green’s
functions must be generated many times for different values of
the unknown propagation constant.

Although [12]–[14] could deal with a great variety of mul-
ticonductor and multilayer structures, they were purposely re-
stricted to study only theboundregime. The important question
posed by the existence of both surface and space leaky-wave so-
lutions has been often treated in the frame of the SDA [3], [5] in
such a way that only zero-thickness strip-like or slot-like struc-
tures have been considered in depth. Moreover, accounting for
leakage in the frame of SDA requires rather sophisticated phys-
ical/mathematical reasoning to properly choose the integration
paths that moment-method spectral integrals have to run along.
The same reasoning has to be used if the spatial-domain Green’s
function is obtained by means of a direct integration in the spec-
tral domain [7]. Thus, the aim of this paper is to show how to
extend the method proposed in [12] and [14] to also deal with
the leaky regime. This new approach turns out to be very simple
and numerically very efficient for strictly planar structures and
capable of dealing with nonplanar conducting structures. These
valuable features can be also advantageously used for studying
the practical excitation of leaky modes [15], [16] since this 3-D
problem involves as one of its crucial steps the computation of
the reaction integrals appearing in the 2-D case.

II. FORMULATION OF THE PROBLEM

The spatial-domain mixed-potential integral equation (MPIE)
will be applied to study the wave propagation in printed-circuit
lines such as that shown in Fig. 1. The required kernel of the
MPIE, namely, the spatial-domain Green’s functions associated
with the scalar and vector potentials [6], have to be obtained
from their corresponding spectral versions. This calculation im-
plies to perform Fourier transform inversions of the following
general type:

(1)
where

(2)

with being the transverse wavenumber,being the free-
space wavenumber, and being the assumed prop-
agation constant. (Note that has been used instead of
with the purpose of setting all these variables as wavenumbers;
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Fig. 1. Cross section of the structure under study.

, where is the variable used in [14] and other pa-
pers.) It can be checked that the spectral-domain Green’s func-
tions of the layered structure are actually functions of pro-
vided that the media are isotropic and/or uniaxial anisotropic
dielectric. Writing these functions in this convenient way (in-
stead of as functions of ) is very relevant as it will become
apparent later.

The DCIT can now be advantageously used to avoid the ar-
duous computational effort involved in a direct numerical inte-
gration of (1). The efficiency of this approach basically lies in
the fact that the spatial-domain counterpart of an spectral ex-
ponential term is known in closed form thanks to a 2-D ver-
sion of the Sommerfeld identity. This idea has been success-
fully applied in [12]–[14] to characterizeboundmodes. Our
purpose here is to generalize that formulation to also account
for surface- and space-wave leaky modes. This generalization
requires a previous treatment of the singularities (branch points
and poles) of the spectral Green’s functions since these singu-
larities are directly related to radiation in the form of space and
surface waves [17]. Considering that the underlying idea of the
DCIT is to find a sum of complex exponential functions that fits
properly and each exponential term is a complex analytical
function, it is then crucial in this method to find that part of the
Green’s function that is actually analytic (i.e., free of singulari-
ties) within the range of interest. In this sense, it is important to
note that, as a function of , is not a multivalued func-
tion because it does not show branch points in the complex
plane. Nevertheless, is still meromorphic since it does
have poles, which should be extracted out in order to isolate the
analytic part of . In fact, has an infinite number
of poles at , where

(3)

with being the wavenumber of theth mode of the grounded
layered substrate. Despite the existence of infinite poles, in most
practical cases, it is only necessary to extract out those poles
appearing on the real axis, i.e., the poles associated with the
above-cutoff surface waves of the grounded layered substrate
[14]. For convenience, the quasi-static contribution should be
also extracted out explicitly, as originally reported in [9] and
later, in a 2-D context, in [12].

The combined MPIE–DCIT approach was used in [14] to
study the bound regime in structures with nonplanar conductors.
This approach will be briefly outlined here in order to introduce
the nontrivial changes required to extend the method for dealing
with the leaky regime. When nonplanar conductors are consid-
ered, the kernel of the integral equation contains several terms
of the dyadic magnetic vector-potential Green’s function and
some derivatives plus the term associated to the scalar-poten-

tial Green’s function [14]. Thus, the Green’s function problem
can be reduced to obtaining the space-domain version of the fol-
lowing generic Green’s function:

(4)

where is a frequency-dependent constant and

(5)

with being the spectral Green’s function for
(apart from ).

The spectral function can be split into the following
three different contributions:

(6)

where accounts for the quasi-static part

(7)

(with being a known constant); represents the contribution
of the significant surface-wave terms

(8)

where is the pole associated with theth surface wave and
is its residue. is the remaining quasi-analytical part that

can be accurately expanded as the following sum of complex
exponential functions:

(9)
where and are, respectively, the amplitude and argument of
each exponential term that expands the part ofnot depending
of and .

A. Treatment of

The spatial-domain version of can be written as

(10)
where is given by

(11)

with . For the nonplanar case, the above inte-
gral and its derivative with respect to can be efficiently
computed using integration contour techniques, as explained in
the Appendix. However, for the planar case ( ),
(11), which will be denoted as , can be obtained in closed
form. If relationship [18, (4.91)] is now adapted and analytically
extended to make continuous in the entire complex
plane, can be conveniently expressed as

(12)
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Fig. 2. Paths of integration in the complexk -plane. For simplicity, only a
pair of surface-wave poles are shown (���).

in order to emphasize the nature of the associated field. From a
physical point-of-view, the case implies that the
fields associated with the above-cutoffth surface wave decay
exponentially in the transverse direction. Taking all the sur-
face-wave terms in this way would be consistent with thebound
regime. The surface-waveleakyregime is accounted for by the

case, which gives the characteristic exponentially
growing-field behavior in the transverse direction [17]. Taking
the second choice for some of the above-cutoff surface waves,
the resulting leaky regime would account for a mode radiating
in the form of only those surface waves thus considered.

The above results can be related to the SDA by means of con-
tour integration techniques. If, for simplicity, only one surface
wave is assumed to be above cutoff, the bound-regime result
in (12) is equivalent to having used the conventional real-axis
integration path when performing the Fourier-transform inver-
sion (path in Fig. 2). The surface-wave leaky-regime result
can be viewed as a consequence of employing an integration
contour detouring around the poles as pathin Fig. 2. Taking
into account that the integrand in (11) has no branch points, in-
tegration along path is equivalent to integration along path

in Fig. 2, whereas the integration path is equivalent to
the integration path . Therefore, switching between and

paths simply implies changing the pole that is captured by
the integration path. This switch is equivalent to choose the pole
according to the sign of its imaginary part.

The above discussion has shown that the selection of the
regime to be deal with (bound or surface-wave leakage) is
simply imposed by the proper choice in (12). Following the
theory given in [15], the moment-method determinant function
whose zeros are the propagation constants of the line defines
a Riemann surface in the longitudinal wavenumber complex

-plane with multiple branch points. Thus, the choice made
in can be related to the proper/improper sheet that the
propagation constant will be located on when searching for
the roots of the dispersion equation of the line.

B. Treatment of

Taking into account the complex exponential expansion (9),
the space-domain contribution associated with
can be expressed as

(13)

Fig. 3. Integration pathsC andC in the complexk -plane. Integration paths
on the proper/improper sheet with respect to the�k branch points are display
in solid/dashed lines. For simplicity, only a pair of surface-wave poles are shown
(���).

where

(14)
Following a similar rationale as that previously used for, each
of the integral representations given by the inverse Fourier trans-
form will be expressed in an appropriate closed form. Thus,
relationship [18, (4.156)] is now adapted and analytically con-
tinued in the entire plane to write

(15)

where are the branch points
of the Green’s function in the complex -plane,

, is the zeroth-order
modified Bessel function of the second kind, and is the
zeroth-order Hankel function of the second kind. Taking into
account that both the quasi-static term and the first term
in (4) can be considered as particular cases of the exponential
terms in expansion (9) (when ), its spatial-domain
counterpart can be readily obtained from (15).

Looking at (15), the first option, i.e., , gives
place to exponentially decaying fields in the normal-direction,
a situation that is compatible with the bound regime. The second
option in (15) provides exponentially growing fields in the upper
half-space, thus accounting for the space-wave leaky regime.
The two-valued (15) can be related to the different integration
paths used in the SDA of space-wave leaky modes [3], [16]. The
conventional real-axis integration path in Fig. 3 is found to
be equivalent to the choice in (15), whereas the

integration path in this figure would reflect the
choice.

C. Solving the Integral Equation

A relevant feature of the present approach is that very ac-
curate closed-form expressions are obtained for the kernels of
the integral equation for both the bound and leaky regimes. The
regime to be studied (bound, surface wave, and space wave) is
simply selected by the convenient choice in (12) and (15). This
provides a systematic, very efficient, and rather simple way to
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study the propagation phenomena, superseding the possible in-
conveniences of the SDA related to the numerical evaluation
of the spectral integrals along different integration paths in the
complex plane.

Once the space-domain kernels are obtained, the integral
equation is solved by using the Galerkin moment method.
Chebyshev polynomials of the first and second kinds weighed
by the edge condition are used as basis functions to analyze
structures with infinitely thin conductors. Structures with
arbitrary cross-sectional conductors are analyzed employing
nonuniformly distributed piecewise linear functions as basis
functions. In both cases, a quasi-analytical evaluation of the
matrix entries is carried out. More details can be found in [12]
and [14].

III. N UMERICAL RESULTS

The present method has been validated by comparing our re-
sults with previously published results and with those obtained
by means of a well-established SDA code [19] developed for
zero-thickness strip-like structures. The agreement for both
bound and leaky regimes is excellent for all the cases consid-
ered. As a first example, Fig. 4(a) and (b) shows the normalized
phase and attenuation constants for a space-wave leaky mode
supported by a microstrip line previously studied by Michalsky
and Zheng [7] only for the zero-thickness case. The comparison
between the data reported in [7] with our MPIE–DCIT results
shows an excellent agreement. Fig. 4(a) and (b) also includes
results for two nonzero thickness cases, i.e., rectangular and
trapezoidal cross-sectional conductors. These curves show how
the shape of the conductor can influence the dispersion curves.
To give an idea of the overall computational effort required
by our method, 100 values of the propagation constant for
the zero-thickness case were computed in 6 s with a Pentium
II 450-MHz computer. Rectangular or trapezoidal structures
require a few seconds to get a single value ofusing the
same platform. Fig. 5 shows another comparison with the
dispersion curves of a circular-wire transmission line reported
in [7, Fig. 7]. Again, the agreement found both for the bound
( ) and the space-wave leaky ( ) modes is very good. It
is interesting to mention that, in the computation of the above
results, because of the presence of several slab waveguide
modes ( , , and ), the explicit contribution of up
to three surface-wave poles had to be considered in the calculus.

Finally, and to show the capability of our method to deal with
multiconductor and multilayer nonplanar structures, a two-layer
LIGA micromachined transmission line has been analyzed. The
LIGA process, described in [20], gives rise to metallizations
with a high thickness/width ratio. This makes it possible to use
the conductor thickness as a new variable in the design of fil-
ters and couplers. The analyzed structure consists of a pair of
square cross-sectional conductors (200200 m) separated
by a 120- m distance and placed on a layered substrate. The
dispersion curves of the normalized propagation and attenua-
tion constants for a surface-wave leaky mode appearing in this
structure are shown in Fig. 6. To study the effect of the metalliza-
tion thickness, the dispersion curves for the same structure as-
suming zero-thickness conductors are also shown. It can be seen

(a)

(b)

Fig. 4. Normalized: (a) phase and (b) attenuation constant for a space-wave
leaky mode in the microstrip line shown in the inset:" = 9:8, w = 3 mm,
h = 0:635 mm.

Fig. 5. Normalized phase and attenuation constants of the fundamental mode
and the first higher mode in a circular-wire transmission line. Lines: our results.
Symbols: data in [7]. Structural parameters:a=h = 0:25, " = 4.

that the splitting point (the point where a complex leaky solution
merges with a complex conjugate solution, and the two solutions
then split apart as two improper real modes) appears at lower
frequencies in the nonplanar case. Results for the square-shape
conductors have been obtained with 15 basis function over each
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Fig. 6. Normalized phase and attenuation constants for a surface-wave leaky
mode in a two-conductor and two-layer transmission line withw = 200 �m,
s = 120 �m,h = h = 210 �m, " = 3, and" = 4:6.

conductor. The CPU time was much larger for the nonplanar
case because of the use of many basis functions (in compar-
ison with the zero-thickness strip case) and the need for com-
puting more time-consuming integrals. Regardless, the method
provides the possibility of efficiently determining in a quantita-
tive way the influence of the thickness or the shape of the con-
ductors in the leaky regime.

IV. CONCLUSIONS

A new approach based on the combination of the MPIE and
DCIT has been developed to compute in a simple and system-
atic way the propagation characteristics of both bound, surface-,
and space-wave leaky modes in printed-circuit lines. One of the
main goals of this approach has been the obtaining of accurate
expressions for the kernels of the corresponding integral equa-
tion in a quasi-analytical way. This has avoided the involved task
of integrating along diverse integration paths in the transverse
wavenumber complex plane required in the SDA. The use of
the complex images technique has also provided high accuracy
and efficiency to the analysis. Working in the spatial domain has
allowed for a direct (although nontrivial) extension of the anal-
ysis to nonplanar conductors. Some results have been reported
to show the accuracy and efficiency of the computer code de-
veloped.

APPENDIX

An efficient method to compute integral (11) and its deriva-
tive with respect to will be shown here. To simplify the
notation, the following new variables will be used:
and .

The integrand in (11) has two poles at and two
branch points at . If an integration path running
from to along the real axis is conveniently closed in
the lower half-plane, the result of this integral is determined by
the surface-wave pole enclosed by such a path. Considering that
the closed path must detour around the branch cut, (11) can be
expressed as

(16)

where

(17)

The first term in (16) is a two-valued function accounting for the
surface-wave pole contribution with —as in (12),
the sign of determines the bound/leaky regime under
consideration. The second term in (16) gives the contribution of
the integration along the branch cut (assuming that )
and, more specifically, it comes from an integration along a ver-
tical branch cut with . As happens in (15),
the sign of in (17) sets the regime (bound/space-wave
leaky) to be treated. The change of variable
causes integral to be quickly calculated by using, for in-
stance, Gauss quadratures.

The derivative of can be readily computed from the above
expressions to give

(18)

where

(19)

Note that, for large values of, the integrands in (17) and
(19) become highly oscillatory, thus giving rise to numerical
drawbacks. In that case, can be calculated by means of a di-
rect integration of (11). This numeric integration must be per-
formed along path in Fig. 2 to account for the bound regime,
whereas path / must be chosen if we are looking for a sur-
face-/space-wave leaky regime.

The integral along the real-axis path, denoted as , can
be rewritten in the following form:

(20)

( ), which can be efficiently calculated by using
Gauss quadratures. Note that large values oflead to a fast
convergence for .

The integration along path , i.e., , can be split into inte-
gration along the real axis ( ) in addition to integration along

and paths in Fig. 2, namely,

(21)

where

(22)

with and .
According to [16], the integral along path , i.e., , can

be expressed as integral (21) plus an integral running along a
loop, as shown in [16]

(23)
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where

(24)

with and .
The derivative of with respect to can be readily

obtained from (20) and (22) yielding the following expressions:

(25)

(26)

(27)
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